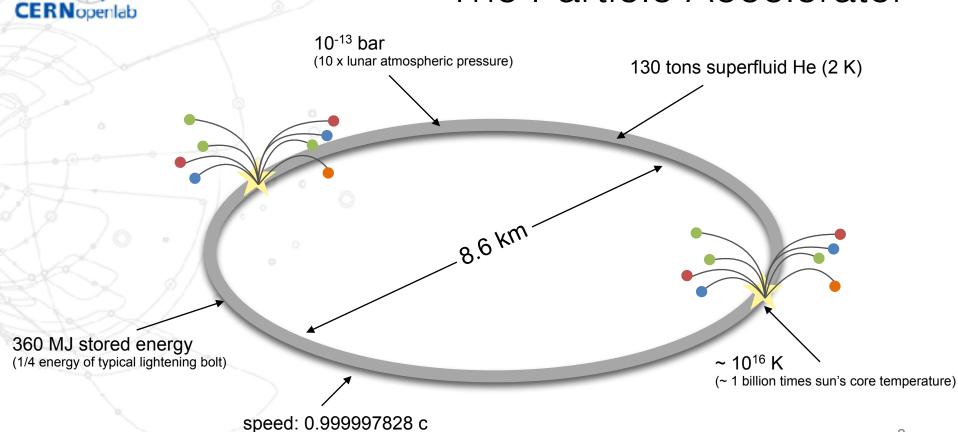

Computing at CERN: challenges and opportunities

28.6.2017 PASC 2017 Omar Awile (<u>omar.awile@cern.ch</u>),



Background image: Shutterslock

CERN: The Large Hadron Collider

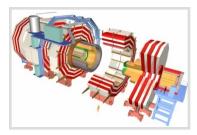
The Particle Accelerator

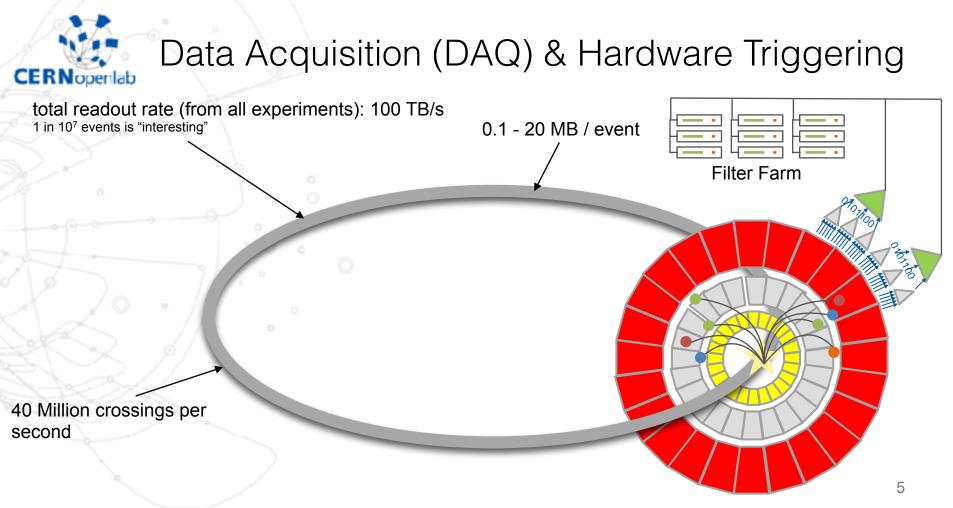
The experiments

- •ALICE "A Large Ion Collider Experiment"
 - Size: 26 m long, 16 m wide, 16m high; weight: 10000 t
 - 35 countries, 118 Institutes
 - Material costs: 110 MCHF

CERNopenlab

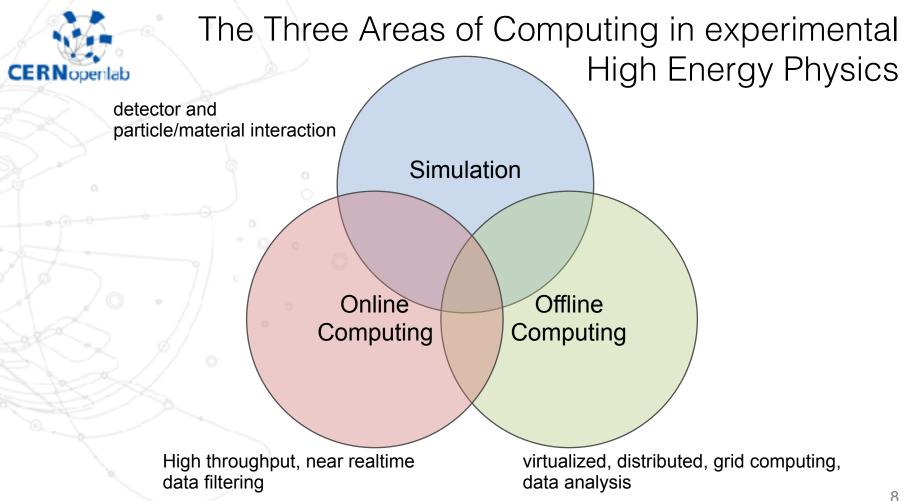
- •ATLAS "A Toroidal LHC ApparatuS"
 - Size: 4 6m long, 25 m wide, 25 m high; weight: 7000 t
 - 38 countries, 174 institutes
 - Material costs: 540 MCHF


•CMS – "Compact Muon Solenoid"


- Size: 22 m long, 15 m wide, 15 m high; weight: 12500 t
- 40 countries, 172 institutes
- Material costs: 500 MCHF

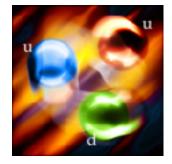
- LHCb "LHC beauty"
 - Size: 21 m long, 13 m wide, 10 m high; weight: 5600 t
 - 15 countries, 52 Institutes
 - Material costs: 75 MCHF

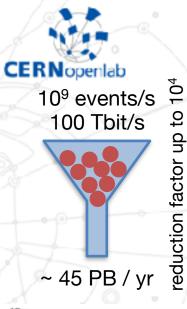

The High-Level Trigger

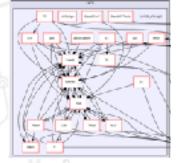

- Triggering (filtering) is done in two steps
 - 1. Filter data in hardware (low-level L1 trigger) incoming rate 4*10⁷
 - reduction factor 400 10'000
 - Filter the pre-filtered data using an in-software high-level trigger reduction factor: 10 - 2'000
- Filtering has to be performed online in near-realtime.
- HLT reconstructs all particle trajectories and decays
 - takes decision based on reconstructed event data
- Remaining data is stored for offline analysis

The Worldwide LHC Computing Grid

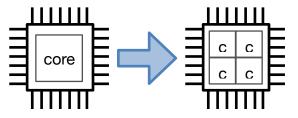
- The remaining events after filtering are sent to the CERN datacenter for tape archival and disk buffer
 - Redistributed to 13 Tier-1 and 155 Tier-2 sites
- Up to 700k cores (2016) committed for up to 400k jobs in distributed computing grid
- Analyses are run offline

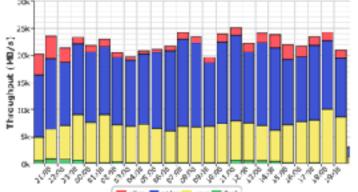

High Performance Computing vs. High Throughput Computing


High Performance Computing	High Throughput Computing
 Usually large data sets (grids, particle PiCs) decomposed over many nodes 	
Tightly coupled, i.e. some kind of (loc global) synchronization needed over runtime —> local / global comm.	al, or Embarrassingly parallel, each event is processed independently except for event building or aggregation (global comm.)
Parallelization using MPI+X (or global address space)	Parallelization using multithreading (pthreads, TBB) + process manager
Execution time as short as possible, k no hard time limits	out Triggering: near realtime (< 100 ms) Offline Analysis: no hard time limits
fault tolerance important but difficult (MPI) data loss costly, but fault tolerance easy to deal with


What about HPC at CERN?

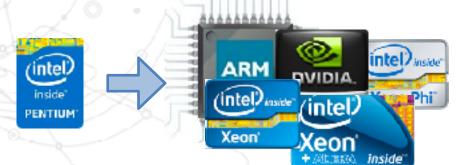
- lattice QCD codes
 - Method for solving quantum-chromodynamics theory. Simulations used in theoretical particle physics
 - CERN runs one (small) HPC cluster specifically for lattice QCD codes.
 - accelerator simulation
 - simulating the particle beam
 - simulating physical properties of beam pipe and interactions between beam and its environment
 - structural simulations of beam pipe
 - Need for HPC resources and expertise increasing


Computing Challenges Today


Complex codes 100k - 1M LOCs

many algorithms flat performance profile 10 - 100 ms to decide if event is to be kept

Codes were developed before multicore / SIMD architectures became "mainstream"


Very complex systems, variety of network and compute hardware, Analysis code written by scientists with *casual* programming experience big fluctuations in job queue size

Computing Challenges in the Future



Expected increase 50x in data throughput after LS 3 (upgrade)

hardware (compute & interconnect) is becoming more heterogeneous. Programming models and software must adapt

Experiments will try to implement triggering entirely in software - reduction factor must be achieved entirely in software!

How should data be stored in the future? Produced data extremely valuable! 12

Thank you!

and now...

Gerhard Raven, (VU University Amsterdam, Netherlands) HEP Realtime Analysis: Scaling Beyond Embarrassingly Parallel

Daniel Hugo Campora Perez, (University of Seville, Spain) High Performance Computing meets High Energy Physics

Felice Pantaleo, (CERN, Switzerland)
 Heterogeneous Event Selection at the CMS Experiment