

The Field of Particle Physics

Quarks **Forces** Leptons

The Field of Particle Physics

Quarks

Leptons

The Field of Particle Physics

Quarks **Forces** Higgs boson Leptons

$$E = mc^2$$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$$E = \sqrt{m^2c^4 + p^2c^2}$$

$$mc^2 = \sqrt{\sum_{i} E_i^2 - \sum_{i} p_i^2 c^2}$$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$$mc^2 = \sqrt{\sum_i E_i^2 - \sum_i p_i^2 c^2}$$

$$\frac{N_{B^0 \to K^+\pi^-} - N_{\overline{B^0} \to K^-\pi^+}}{N_{B^0 \to K^+\pi^-} + N_{\overline{B^0} \to K^-\pi^+}} = -0.088 \pm 0.011(stat) \pm 0.008(syst)$$

$$\Gamma(B \to K\pi)/\Gamma_{\rm tot} = (19.6 \pm 0.5) \cdot 10^{-6}$$

RARE DECAYS: DIMUONS

HEP REALTIME ANALYSIS

LHCb-CONF-2016-05

LHCb-CONF-2016-05

Nobel 1976

Burton Richter
Prize share: 1/2

Samuel Chao Chung Ting

HEP REALTIME ANALYSIS

software, 50K CPU cores "ONLINE": DATA FLOW AND TRIGGER dedicated electronics, $< 4 \mu s$ 1MHz <60 GB/s> 40 MHz, <2 TB/s>

12.5 kHz,

<1 GB/s>

DATA REDUCTION & DATA FLOW

- Disadvantages:
 - time: alignment + calibration applied after data taking
 - money: uses a lot of computing resources to (re)process data
 - physics: imperfect reconstruction in trigger = loss of recorded signal

Updated: 03:50:10

ALLOW FOR LATENCY!

- LHC does not always produce collisions (2012: 37%, 2016: 60%)
- Install 10 PB buffer

05:00 08:00 11:00 14:00 17:00 20:00 23:00 02:00

Instantaneous Luminosity

10000

8000

6000

4000

2000

/ 1e30 cm

ALLOW FOR LATENCY!

- LHC does not always produce collisions (2012: 37%, 2016: 60%)
- Install 10 PB buffer

05:00 08:00 11:00 14:00 17:00 20:00 23:00 02:00

Instantaneous Luminosity

10000

8000

6000

4000

2000

/ 1e30 cm

Updated: 03:50:10

"REAL TIME" CALIBRATION

- Use the introduced delay to perform calibrations
- Software trigger has best possible calibrations available

HEP REALTIME ANALYSIS

UNIFY ONLINE/OFFLINE RECONSTRUCTION

'Online': Near-detector resources

First

Software Trigger

1 MHz → 100 kHz

- Optimize offline code so it fits in 'online' budget
- Very inhomogeous workload: no single hotspot / magic bullet
- Improvements in hundreds of

Hardware Trigger

40 MHz → 1 MHz

places

Time from collision:

months

UNIFY ONLINE/OFFLINE RECONSTRUCTION

- Optimize offline code so it fits in 'online' budget
- Very inhomogeous workload: no single hotspot / magic bullet

US

Improvements in hundreds of

hours

seconds

Measure & Benchmark!

Improve memory usage

days

Vectorization — utilize SIMD

Don't do more work than strictly needed

weeks

UNIFY ONLINE/OFFLINE RECONSTRUCTION

US

For "high-rate" analysis, trigger can now reconstructs "offline quality" data in (quasi) real time!

days

weeks

months

hours

seconds

WRITE OUT LESS INFORMATION!

- For selected measurements, only write trigger-reconstructed signal data, *instead of* the sensor data
- For the same bandwidth, can allow more physics

WRITE OUT LESS INFORMATION!

- For selected measurements, only write trigger-reconstructed signal data, *instead of* the sensor data
- For the same bandwidth, can allow more physics

WRITE OUT LESS INFORMATION!

- For selected measurements, only write trigger-reconstructed signal data, *instead of* the sensor data
- For the same bandwidth, can allow more physics

5 kB / event @ 2.5 kHz = 12.5 MB/s 70 kB / event @ 10 kHz = 700 MB/s

- Individual collisions are scheduled 'round robin' on singlethreaded processes – approx. one per core – with static data/control flow
- Hlt1: O(50) decisions, Hlt2: O(500) decisions
- O(100) "algorithms" per decision
- Accept collision at each level if one (or more) positive decisions
- ► All decisions processed until 'abort' or 'accept' no 'early accept'!
- Each individual decision is based on different criteria, with (some) overlaps but 'logically independent'

- Individual collisions are scheduled 'round robin' on singlethreaded processes – approx. one per core – with static data/control flow
- Hlt1: O(50) decisions, Hlt2: O(500) decisions
- O(100) "algorithms" per decision
- Accept collision at each level if one (or more) positive decisions
- ► All decisions processed until 'abort' or 'accept' no 'early accept'!
- Each individual decision is based on different criteria, with (some) overlaps but 'logically independent'

- Individual collisions are scheduled 'round robin' on singlethreaded processes – approx. one per core – with static data/control flow
- Hlt1: O(50) decisions, Hlt2: O(500) decisions
- O(100) "algorithms" per decision
- Accept collision at each level if one (or more) positive decisions
- ► All decisions processed until 'abort' or 'accept' no 'early accept'!
- Each individual decision is based on different criteria, with (some) overlaps but 'logically independent'

- Individual collisions are scheduled 'round robin' on singlethreaded processes – approx. one per core – with static data/control flow
- Hlt1: O(50) decisions, Hlt2: O(500) decisions
- O(100) "nodes" per decision
- Accept collision at each level if one (or more) positive decisions
- ► All decisions processed until 'abort' or 'accept' no 'early accept'!
- Each individual decision is based on different criteria, with (some) overlaps but 'logically independent'

WORK IN PROGRESS

- Map to tasks & build a graph
 - Require explicit data dependency declarations
 & control flow definitions
- Redesign/refactor code for thread-safety
- Dynamically scheduling (for now: TBB tasks)
 - allow for latency (hiding) necessary (but not sufficient!) for using accelerators
 - Allow multiple collisions 'in flight' to further increase parallelism and workload per task

WHY? THE LHCB UPGRADE!

- To (continue to) make progress in the future:
 - Increase signal rate by (at least!) an order of magnitude
 - Increase luminosity x5, (trigger) efficiency x2 (depending on mode)

HEP REALTIME ANALYSIS

"ONLINE": DATA FLOW AND TRIGGER

"ONLINE": DATA FLOW AND TRIGGER

- At 5x luminosity, the 1 MHz readout rate becomes a bottleneck
 - Signal no longer identifiable by 'simple', fixed latency hardware processing

dedicated electronics,

<2 TB/s>

"ONLINE": UPGRADE DATA FLOW AND TRIGGER

- At 5x luminosity, the 1 MHz readout rate becomes a bottleneck
 - Signal no longer identifiable by 'simple', fixed latency hardware processing
- Ship all data to a CPU farm running software higher level trigger

EVENT BUILDING @ 40 MHZ

- > 32 Tbit/s
- "All data to the surface"

EVENT BUILDING @ 40 MHZ

- > 32 Tbit/s
- "All data to the surface"
- Decouple front-end electronics from event builder network
 - ▶ Frontend→GBT link →PCle
 - GBT link: rad-hard, integrated into front-end, so no commodity solution possible...
- Buffering in PC memory

EVENT BUILDING @ 40 MHZ

- "COTS" as soon as possible
- O(500) servers for event building
- Data Center" ("thin" switch, Infiniband/Ethernet/...) instead of "Telecom" (ATCA, "fat" switch)
- Event Filter: O(1000) servers

CERN OPENLAB WHITEPAPER

- Data acquisition is where instruments meet IT systems. "
- "Costs and complexity must be reduced by replacing custom electronics with highperformance commodity processors and efficient software."

SUMMARY

LHCb physics covers a large "dynamic range"

- high efficiency for the rarest B decay
- high purity for the largest charm samples

"Real-time" processing crucial for the physics reach

In the future: software processing 30 MHz of collisions

Writing the required software will be a challenge!

- Robust crashes will lead to data loss
- Correct mistakes will render the data 'useless'
- Efficient, both in reconstruction & selection, and use of computing resources

