
Heterogeneous Event Selection  
at the CMS experiment at CERN 

Felice Pantaleo 
 

CERN, Experimental Physics Department 

 
felice@cern.ch 



2 



Tracking 

•  Particles produced in the collisions leave 
traces (hits) as they fly through the 
detector 

•  The innermost detector of  CMS  is called 
Tracker 

•  Tracking: the art of  associate each hit to 
the particle that left it 

•  In a solenoidal magnetic field, trajectories 
are helices 
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Tracking 

•  Particles produced in the collisions leave 
traces (hits) as they fly through the 
detector 

•  The innermost detector of  CMS  is called 
Silicon Tracker 

•  Tracking: the art of  associate each hit to 
the particle that left it 

•  In a solenoidal magnetic field, trajectories 
are helices 
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Two-stages event selection strategy 
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Trigger System 
•  Reduce input rate (40 MHz) to a data rate (~1 kHz) 

that can be stored, reconstructed and analyzed Offline 
maximizing the physics reach of  the experiment 

Level 1 Trigger 
•  coarse readout of  the Calorimeters and Muon detectors 
•  implemented in custom electronics, ASICs and FPGAs 
•  output rate limited to 100 kHz by the readout 

electronics 

High Level Trigger 
•  readout of  the whole detector with full granularity 
•  based on the CMSSW software, running on 22,000 

Xeon cores 
•  organized in O(2500) modules, O(400) trigger paths, 

O(10) streams 
•  output rate limited to an average of  ~1 kHz by the 

Offline resources 
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Tracking at the CMS High-Level Trigger 
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full track reconstruction 

•  Today the CMS online farm consists of  
~22k Intel Xeon cores 
– The current approach: one event per 

logical core 

•  Pixel Tracks cannot be reconstructed 
for all the events at the HLT 

•  This will be even more difficult at 
higher pile-up 
– Combinatorial time in pixel seeding 

O(pileup!) in worst case 
– More memory/event 

 



PATATRACK: From RAW data to Tracks 

•  Objective: 
– A hybrid CPU-GPU application that takes RAW data 

coming from the pixel detector and gives Tracks as 
result 

•  Trigger avg latency should stay within 220ms 
•  GPU memory transfers are hidden exploiting 

instruction level parallelism (function executing 
while non related transfer happens)  
–  increased throughput 
–  no impact on total latency 

•  Ingredients: 
– Massive parallelism within the event 
– Avoid useless data transfers and transformations 
–  Simple data formats optimized for parallel memory 

access 
–  Renovation at algorithmic level 
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Discriminants 
•  PATATRACK should: 
–  Increase the throughput of  the HLT farm 

– Substantially decrease the average trigger response time of  the HLT farm while keeping 
the rate of  input tracking events constant 

– or Substantially increase the rate of  input tracking events while keeping the average trigger 
response time of  the HLT constant  

– Cost less (initial cost + energy consumption) 

– Occupy the same volume 
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Credits: Apollo 13: Square peg in a round hole 
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•  Hits on different layers  
•  Need to match them and create quadruplets 
•  Create a modular pattern and reapply it iteratively 
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RMS HEP Algorithm 



RMS HEP Algorithm 

•  First create doublets from hits of  pairs 
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RMS HEP Algorithm 

•  First create doublets from hits of  pairs 
•  Take a third layer and propagate only the generated doublets 
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RMS HEP Algorithm 

•  First create doublets from hits of  pairs 
•  Take a third layer and propagate only the generated doublets 
•  Consider a fourth layer and propagate triplets 
•  Store found quadruplets and start from another pair of  layers 
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RMS HEP Algorithm 
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•  First create doublets from hits of  pairs 
•  Take a third layer and propagate only the generated doublets 
•  Consider a fourth layer and propagate triplets 
•  Store found quadruplets and start from another pair of  layers 
•  Repeat until happy… 
•  Does this fit the idea of  massively parallel computation? I don’t really think so… 



RMS HEP Algorithm 

This kind of  algorithm is not very suitable for GPUs: 
•  Absence of  massive parallelism 
•  Poor data locality 
•  Synchronizations due to iterative process 
•  Very Sparse and dynamic problem (that’s the hardest part, still unsolved) 
•  Parallelization does not mean making a sequential algorithm run in parallel 
–  It requires a deep understanding of  the problem, renovation at algorithmic level, understanding of  

the computation and dependencies 

The algorithm was redesigned from scratch getting inspiration from Conway’s Game of  Life 
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Cellular Automaton (CA) 
•  The CA is a track seeding algorithm designed for parallel architectures 
•  It requires a list of  layers and their pairings 
– A graph of  all the possible connections between layers is created 
– Doublets aka Cells are created for each pair of  layers (compatible with a region hypothesis) 
– Fast computation of  the compatibility between two connected cells 

– No knowledge of  the world outside adjacent neighboring cells required, making it easy to parallelize 

•  However this is not a static problem, not at all… 
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Evolution 

•  If  two cells satisfy all the compatibility requirements they are said to be neighbors and 
their state is set to 0 

•  In the evolution stage, their state increases in discrete generations if  there is an outer 
neighbor with the same state 

•  At the end of  the evolution stage  
the state of  the cells will contain the 
information about the length 

•  If  one is interested in quadruplets,  
there will be surely one starting from  
a state 2 cell, pentuplets state 3, etc. 
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Tests 
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Hardware on the bench 
•  We acquired small machine for development and testing: 
– 2 sockets x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (12 physical cores) 

– 256GB system memory 
– 8x GPUs NVIDIA GTX 1080Ti 
– Total cost: 5x 
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Rate test 

•  The rate test consists in: 
– preloading in host memory few hundreds events 

– Assigning a host thread to a host core 
– Assigning a host thread to a GPU 
– Preallocating memory for each GPU for each of  8 cuda streams 
– Filling a concurrent queue with event indices  
– During the test, when a thread is idle it tries to pop from the queue a new event index: 
•  Data for that event are copied to the GPU (if  the thread is associated to a GPU) 
•  processes the event (exactly same code executing on GPUs and CPUs) 
•  Copy back the result 

– The test ran for approximately one hour 
– At the end of  the test the number of  processed events per thread is measured, and the total rate can 

be estimated 
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Rate test 
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Rate test 

•  Total rate measured:  
– 8xGPU: 6527 Hz 

– 24xCPUs: 613 Hz 

•  Number of  nodes to reach 100kHz: ~14 
•  Total Price: 70x  

•  When running with only 24xCPUs 
– Rate with 24xCPUs: 777 Hz 

•  Number of  nodes to reach 100kHz: ~128 
•  Total Price: 320x 
•  Assuming an initial cost of  2.5      per node  
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Energy efficiency 

•  During the rate test power dissipated by CPUs and GPUs was measured every second 
– Nvidia-smi for GPUs 

– Turbostat for CPUs 

•  8 GPUs: 1037W 
– 6.29 Events per Joule 

– 0.78 Events per Joule per GPU 

•  24 CPUs in hybrid mode: 191W 
– 3.2 Events per Joule 

– 0.13 Events per Joule per core 

•  24 CPUs in CPU-only test: 191W 
– 4.05 Events per Joule 

– 0.17 Events per Joule per core 

•  That is 1/3 more      s in the energy bill when processing 100kHz input 
25 
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Conclusion 

•  Dynamic problems are very hard to fit in HPC-like paradigms 
– Good news*: we have to fit them 

•  Results demonstrated 
– Challenges in the integration (see talk by Vincenzo this afternoon) 
– Still need to put all the components together and choose the platform 

•  At CERN,       are extremely expensive!  
•  Same codebase running on CPUs and GPUs and producing same results bit-by-bit 
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Questions? 

felice@cern.ch 
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