
STITCHED	THE	MULTI-THREADED	CMS	
FRAMEWORK:	

STRATEGY	AND	PERFORMANCE	ON	HPC	
PLATFORMS

or
how	to	convert	100TB/s	into	a	Nobel	prize

Vincenzo	Innocente
CMS	Experiment	&	CERN/	EP-SFT

PASC	2017
Lugano

June	28th,	2017

Images:	credit	CERN	unless	specified

Slides	stolen	from:
Erica	Brondolin
Lindsay	Gray
John	Harvey
Sverre Jarp
Chris	Jones
Felice Pantaleo
David	Rohr
Lucia	Silvestris

Why	are	we	here	today?	

©	2009	Herb	Sutter

• The	7	“fat”	years	of	frequency	
scaling:
– The	Pentium	Pro	in	
1996:	150	MHz	(12W)

– The	Pentium	4	in	2003:	
3.8	GHz	(~25x)	(115W)

• Since	then
– Core	2	systems:

• ~3	GHz
• Multi-core

• Recent	CERN	purchase:
– Intel	Xeon	E5-2630	v3

• “only”	2.40	GHz	(85W)
• 8	core

VI	HPC	in	EHEP 2

Memory	Latency

VI	HPC	in	EHEP 3

Simple,	but	illustrative	example
• KNL	has	~64	cores	@1.30GHz,	2FMA	port	
(VPU)	each,	4-way	hardware	threading,	
hardware	vectors	of	size	8	(Double	Precision),	
16GB	of	fast	memory:

• 3TFLOPS	DP	for	400GB/s	=	0.5bit/flop-sp
– 60	fp-ops	=	1	fp-load

VI	HPC	in	EHEP 4

Streaming	Multiprocessor	Architecture

NVIDIA		Pascal
32	CUDA	core
x4	x5	x4	=	2560	
Floating	Point	Units	
@1.7GHz
8GB	fast	memory

credit	AnandTech

Require	110	fp-ops
to	compensate	
one	memory	access!

VI	HPC	in	EHEP 5

Do	More	with	Less

• Improving	throughput	and/or	latency	requires	
exploiting	optimal	massive	parallelization	at	all	
levels

• Speeding	up	algorithms	will	not	pay	up	if	
memory	access	is	not	reduced	

VI	HPC	in	EHEP 6

Bunch Crossing! 4 107 Hz

7x1012 eV ! Beam Energy
1034 cm-2 s-1 ! Luminosity
2835 ! Bunches/Beam
1011 ! Protons/Bunch

7 TeV Proton Proton
colliding beams

Proton Collisions! 109 Hz

Parton Collisions

New Particle Production ! 10-5 Hz
(Higgs, SUSY,)!

p pH

µ+

µ-

µ+

µ-

Z

Z
p p

e- νe

µ+

µ−

q

q

q

q
χ1

-

g~

~

χ2
0~

q~

χ1
0~

Selection of 1 event in 10,000,000,000,000

7.5 m (25 ns)

Collisions	at	the	LHC:	summary

VI	HPC	in	EHEP 7

Detector	“onion”	structure

VI	HPC	in	EHEP 8

MUON BARREL

CALORIMETERS

Silicon Microstrips
Pixels

This image cannot currently be displayed.

ECALScintillating PbWO4
Crystals

Cathode Strip Chambers (CSC)
Resistive Plate Chambers (RPC)

Drift Tube
Chambers (DT)

Resistive Plate
Chambers (RPC)

This image cannot currently be displayed.

This image cannot currently be displayed.

SUPERCONDUCTING
COIL

IRON YOKE

TRACKERs
MUON

ENDCAPS

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

HCALPlastic scintillator
copper
sandwich

This image cannot currently be displayed.

This image cannot currently be displayed.

An	experiment:	CMS

~66M	channels
~9M	channels

~250K	channels ~250K	channels

~100K	channels

VI	HPC	in	EHEP 9

Data Flow
LEVEL-1 Trigger
Hardwired processors (ASIC, FPGA)
 Pipelined massive parallel

HIGH LEVEL Triggers
 Farms of

processors

10-9 10-6 10-3 10-0 103

25ns 3µs hour yearms

Reconstruction&ANALYSIS
TIER0/1/2

Centers

ON-line OFF-line

sec

Giga Tera Petabit

Input	rate:	40MHz
Latency	<3-8	μs
Datasize <5-50KB
Select	<	one	in	thousand
~50	“topological”	categories

Input	rate	10-50KHz	
Latency	~seconds
Datasize <100KB-2MB
Select		~one	in	hundred
~500	“physics”	categories

Input	rate	100-1000Hz
Latency	
few	hours	for	Data	quality	feedback
years	for	final	publication

Datasize 2MB
Physics	driven	classification

Natural	Parallelism	allows	
for	a	throughput	oriented	
architecture.

VI	HPC	in	EHEP 10

Toward	2023
• High	Luminosity:	proton	collisions	per	bunch-crossing	(PU)	40	->	200

– x5	more	occupancy	in	detectors
– Access	to	new	corners	of	phase-space

• High	Mass,	Boosted	topologies
– Dense	environment

• New	Detectors
– New	Tracker

• Higher	granularity	(x4),	extended	coverage,	hardware	trigger	capability
– CMS:	New	High	granularity	Calorimeter
– Timing	information

• First	Level	Trigger
– Include	Tracking	information
– Output	Rate	up	to	1MHz

• High	Level	Trigger
– More	use	of	tracking
– Detailed	analysis	in	search	of	new	signals
– Output	Rate	up	to	10KHz

• Offline
– Not	just	do	as	well	as	today	but	at	PU	200
– More	precision	to	look	for	tiny	signals	of	New	Physics

VI	HPC	in	EHEP 11

Data	Hierarchy:	Our	solution	to	BigData
“RAW,	ESD,	AOD,	TAG”

RAW Detector digitisation~2 MB/event
~9MB with Sim

~80MB at PU200

ESD/RECO Pseudo-physical information:
Hits, Clusters, track candidates

~100 kB/event
~2MB with Sim
~23MB at PU200

(mini)AOD

Physical information:
Transverse momentum,
Association of particles, jets,
(best) id of particles,

~10 kB/event
<40kB prune/compress

TAG/tuple~1 kB/event
Relevant information
for “fast” event selection

Triggered	events
recorded	by	DAQ

Reconstructed	
information

Analysis	
information

Classification	
information

VI	HPC	in	EHEP 12

HEP	Applications
Algorithms	read	and	write	
from/to	the	event-data	
store	and	the	“services”

Only	interfaces	are	defined	
(with	no	“cost”	associated)	

Algorithms	are	in	turn	
based	on	a	large	set	of	
utilities	and	foundation	
libraries

VI	HPC	in	EHEP 13

A	real	application	(LHCb Brunel)

VI	HPC	in	EHEP 14

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

à multi-process and multi-thread
applications are now in production

à CMS simulation and reconstruction
runs on KNL with 126 threads well
within the16GB of fast memory

àI/O remains a problem...

Event parallelism

Sverre Jarp 2007

VI	HPC	in	EHEP 15

VI	HPC	in	EHEP 16

Beyond	
event-level	parallelism

– Why?
» We	may	endup with	more	core	than	events
» Resources	(shared	access	to	memory,	to	disk)	may	be	scarce

• Typical	example	is	a	KNL	used	as	a	cluster	of	~256	cpus

– Parallelize	a	DAG	workflow	is	relatively	easy	including	the	
management	of	a	mild	overcommit	to	mitigate	starvation	issues

» All	concurrent	framework	implements	it	(or	plan	to	implement	it)
» To	work	well	it	requires	a	reasonably	balanced	workflow:	

• a	single	long	pipeline	may	easily	defeat	its	purpose!
» Iterative	tracking	is	the	most	striking	example	of	long	pipeline	(50%	of	

reco time	spent	in	it	for	CMS…)

– NB:	up	to	this	point	data-processing	is	fully	reproducible	
independently	of	the	order	of	execution	and	granularity	of	
concurrency

VI	HPC	in	EHEP 17

Outer	loop	parallelization
• Typically	each	processing	module	has	an	“outer	loop”	on	its	

input	collection
– The	most	trivial	concurrency	model	is	to	parallelize	it

• “For	loop”	parallelization	is	a	well	established	practice
• Challenge:	synchronize	with	outer	scheduler…

• In	CMS	proven	to	work	“almost”	out	of	the	box	for	both	
seed	and	track	building
– Seed	building	is	fully	combinatorial,	no	reproducibility	issues
– Track	building	includes	“cleaning	passes”	to	remove	already	

used	hits	
• Introduces	a	sequential	dependency	and	therefore	an	irreproducibility	
in	case	of	parallel	processing

• Current	implementation
– Avoid	“cleaning”	and	pay	the	price

VI	HPC	in	EHEP 18

In-Out	parallelization
• Out-In	parallelization	will	allow	to	overcome	the	limitation	of	traditional	batch	

processing.	Exploiting	new	(heterogeneous)	concurrent	hardware	(SIMD/SIMT)	will	
require	a	completely	new	approach,	most	probably	a	full	rethinking	of	algorithms,	
data	structures	and	even	of	the	workflow	decomposition

• By	definition	SIMD/SIMT	applies	to	the	innermost	loop
– Either	directly	or	by	code	transformation

• w/r/t multi-threading,	effective	concurrency	is	“broken”	in	SIMD/SIMT	by	pretty	
common	patterns	such	as

– Branch	predication
– Random	memory	access
– Recursion

• SIMD/SIMT	algorithms	are	fragile
– Supporting	a	new	use	case	(even	adding	some	protections	or	a	minor	variant)	may	destroy	

efficient	parallelism
– Often	better	to	duplicate	code	and/or	to	partition	data	and	manage	conditionals	at	a	higher	level	

(which	is	not	necessarily	a	bad	thing	even	in	general!)
– Runtime	polymorphism	is	out-of-question:	has	to	be	managed	outside.

• Mitigation	strategies	do	exist,	still	for	a	full	efficient	use	of	these	architectures	a	
dedicated,	specialized	software	effort	is	required

– Think	parallel
– Think	local

VI	HPC	in	EHEP 19

Making	the	code	SIMD/SIMT	friendly

• Several	“success	stories”	in	CMS:	pattern	very	similar
– Transform	storage	representation	in	algorithm	specific	data

• SOA	to	AOS,	variable	transformation,	sorting,	filtering,	re-indexing	etc
– Move	all	constant	components	outside
– Devirtualize,	Use	explicit	RTTI,	inline

• Move	from	generic	to	specific
• Limit	the	number	of	use-cases	to	the	few	known

– Make	functions	to	act	on	collections	not	on	single	objects	
• The	net	effect	is	a	significant	speed	up	just	from	such	code	

transformation
– In	many	cases	vectorization itself	adds	little

• Short	inner	loops
• Little	computations
• Branch	predication

VI	HPC	in	EHEP 20

Integration	in	the	Cloud
and/or	HLT	Farm

• Different	possible	ideas	depending	on	:
– the	fraction	of	the	events	running	tracking	
– other	parts	of	the	reconstruction	requiring	a	GPU

Today

Filter Units

Builder Units
or disk servers

CMS FE, Read-out Units

21

Integration	in	the	Cloud/Farm
• Every	FU	is	equipped	with	GPUs

– tracking	for	every	event

Option 1

GPU Filter Units

Builder Units
or disk servers

22

• Rigid	design
+	easy	to	implement
- Requires	common	acquisition,	dimensioning	etc

Integration	in	the	Cloud/Farm
• A	part	of	the	farm	is	dedicated	to	a	high	density	GPU	cluster
• Tracks	(or	other	physics	objects	like	jets)	are	reconstructed	on	

demand

Option 2

Filter Units

Builder Units
or disk servers

GPU Pixel
Trackers

23

• Flexible	design
+	Exandible,	easier	to	balance	
- Requires	more	communication	and	software	development

Integration	in	the	HLT	Farm
• Builder	units	are	equipped	with	GPUs:	

– events	with	already	reconstructed	tracks	are	fed	to	FUs	with	
GPUDirect

– Use	the	GPU	DRAM	in	place	of	ramdisks for	building	events.

Option 3

Filter Units

GPU Builder Units

24

CMS FE, Read-out Units• Very	specific	design
+	fast,	independent	of	FU		developments,	integrated	in	readout
- Requires	specific	DAQ	software	development:	GPU	“seen”	as	a	detector	element

CMS	simulation	&	data	processing	
Software	“Legacy”

• ~10k	“modules”
• ~1000	“data	processing”	modules
• Code	(SLOC)

– C++:	3,558,032	(68.86%)
– python:	1,240,801	(24.02%)

• Used	only	in	initialization
– fortran:	277,857	(5.38%)

• Interface	to	physics	simulation	code

• Total	size	of	TEXT	sections	:	229,246,680	bytes
– +	~220MB	of	“external	software”

VI	HPC	in	EHEP 25

VI	HPC	in	EHEP 26Credit	David	Rohr

VI	HPC	in	EHEP 27Credit	David	Rohr

Conclusions
• Free	lunch	is	over

– To	improve	the	efficiency	of	software	we	need	to	increase	the	granularity	
of	parallelism,	optimize	data	access	patterns	and	make	use	of	
heterogeneous	resources

• Waiting	for	the	definitive	standard	to	emerge	we	need	to	develop	our	
own	infrastructure	to	support	the	implementation	of	concurrent	
algorithms	able	to	exploit	parallelism	on	heterogeneous	hardware

• Recent	work	shows	that
– An	efficient	concurrent	schedule	of	algorithms	is	feasible
– With	huge	effort	it	is	possible	to	make	current	algorithm	

implementations		free	from	data-race	(thread	safe)
– Making	use	of	parallelism	in	algorithms	requires	a	total	re-

implementation
• More	R&D	is	required	to	tackle	the	challenges	of

– Exploiting	heterogeneity
– Efficient	parallelize	algorithms
– Efficient	utilization	of	memory	hierarchy
– Efficient	utilization	of	the	few	developers	left

VI	HPC	in	EHEP 28

BACKUP

VI	HPC	in	EHEP 29

The	real	issue:	maximize	throughput
Theoretical	peak	throughput:	the	maximum	amount	
of	data	that	a	kernel	can	read	and produce	in	the	unit	
time.	

Throughputpeak (GB/s) = 2 x access width (byte) x mem_freq (GHz)

This means that if your device comes with a memory
clock rate of 3GHz DDR (double data rate) and a
384-bit wide memory interface, the amount of data
that a kernel can process and produce in the unit
time is at most:

Throughputpeak (GB/s) = 2 x (384/8)(byte) x 3 (GHz) = 288 GB/s

VI	HPC	in	EHEP 30

Consequence: cpu starvation!

• NVIDIA TESLA Kepler K40:
● 1.4 TFLOPS DPFP peak throughput
● 288 GB/s peak off-chip memory access bandwidth

– 36 G DPFP operands per second

● In order to achieve peak throughput, a program
must perform 1,400/36 = ~39 DPFP arithmetic
operations for each operand value fetched from off-
chip memory
● In most of current code is 0.5 (fetch two operands,

never use them again)!
VI	HPC	in	EHEP 31

Tracking	at	CMS
• Particles produced in the

collisions leave traces (hits) as
they fly through the detector

• The innermost detector of CMS
is called Tracker

• Tracking: the art of associate
each hit to the particle that left it

• The collection of all the hits left
by the same particle in the
tracker along with some
additional information (e.g.
momentum, charge) defines a
track

• Pile-up: # of p-p collisions per
bunch crossing

VI	HPC	in	EHEP 32

VI	HPC	in	EHEP 33

Hits	associated	to	found	tracks	only.
At	least	as	many	pre-filtered	or	not	associated

VI	HPC	in	EHEP 34

Traditional	track	building
1. Build doublets
2. “Propagate” doublets to third layer and search for

compatible hits (open search window on target layer)
3. Propagate 1-2-3 triplet to 4th layer and search for

compatible hits

Highly	divergent	code,	optimized	to	bail	out	asap.
Easy	to	parallelize	“Outermost	Loop”,	amost impossible	to	vectorize

VI	HPC	in	EHEP 35

Cellular	Automaton	(CA)
• The	CA	is	a	track	seeding	algorithm	designed	for	parallel	architectures
• It	requires	a	list	of	layers	and	their	pairings

– A	graph	of	all	the	possible	connections	between	layers	is	created
– Doublets	aka	Cells	are	created	for	each	pair	of	layers	(compatible	with	a	

region	hypothesis)
• Doublet	building	identical	to	traditional	approach

– “Connect”	cells	that	share	hit
– Fast	computation	of	the	compatibility	between	two	connected	cells

• Vectorized loop	of	floating	point	operations
– No	knowledge	of	the	world	outside	adjacent	neighboring	cells	required,	

making	it	easy	to	parallelize

VI	HPC	in	EHEP 36

Current	Performance
• Plan	to	use	Cellular	Automaton	in	its	sequential	

implementation	at	the	HLT	already	in	2017

On	GPU	CA	is	Memory-Bandwidth	limited
(on	CPU	as	well…)

• Hardware:	Intel	Core	i7-4771@3.5GHz	,	NVIDIA	GTX	1080

Algorithm time	per	event	
[ms]

Traditional	Triplets 29
Traditional Quadruplets 72
CPU	Cellular	Automaton 14
GPU	Cellular	Automaton 1.2

VI	HPC	in	EHEP 37

Reconstructing	Jet	Constituents

Tracker-Calo Link

Cluster-Track Linking

charged
hadron

charged
hadron

neutral hadron
from energy imbalance

electron

charged
hadron

Resolve, Identify, Measure

CMS Particle Flow (PF)

HCAL

ECAL

Tracker

HCAL
ECAL

Tracker

Raw Detector Readout Clustering and Tracking

Illustrations: Lindsey Gray
Non	trivial	regression	to	compute	best	estimation	of	particle	energy	
combining	all	available	information	taking	into	account	non-uniformity	in	
detector	response
Based	on	intensive,	iterative	statistical	analysis	of	data	themselves	to	
extract	alignment	and	calibration	constants

VI	HPC	in	EHEP 38

Actual	granularity	of	red	towers	is	~100	times	finer
VI	HPC	in	EHEP 39

The	dream	of	every	experimental	
HEP	Physicist:
Identify	and	measure	each	single	
particle	produced	in	a	collision

This	may	need	high	resolution	
calorimetry that	will	compete	with	
trackers	in	complexity	and	data	
volume	

Still,	using	current	data-processing	
approach,	most	of	this	information	
will	reach	the	physicists	only	in	a	
very	condensed	form

Difficult	to	estimate	the	real	impact	
of	such	a	detector	on	physics	
analysis	w/o	a	new	data-processing	
paradigm	

VI	HPC	in	EHEP 40

Big	Question

• Can	a	“new”	Paradigm	make	the	difference?
– Artificial	Intelligence

• Used	already	for	classification

– Dedicated	Specialized	Hardware
• In	use	in	First	Level	Trigger	since	ever

– CMS	Track	trigger	demonstrated	with	latency	<	4us

– Smart	data	mining
• Analysis	currently	limited	to	a	single	data-tier	level

VI	HPC	in	EHEP 41

VI	HPC	in	EHEP 42

