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1 Introduction

Sparse matrix-matrix multiplication is an essential build-
ing block for electronic structure theory calculations. For
this task, the sparse matrix library DBCSR has been devel-
oped1. Its multi-layered structure automatically takes care of
and optimizes several computational aspects like parallelism
(MPI, OpenMP, GPU), data (cache) locality and on-the-fly
filtering.
We introduce a framework for sparse tensor linear algebra,
which enables low-scaling electronic structure methods be-
yond density functional theory. We also present perfor-
mance results for the backends, namely LIBXSMM and LIB-
CUSMM2;3 . Finally, we show some preliminary performance
results when running DBCSR on a supercomputer equipped
with Intel Xeon Phi processor, code name Knights Landing
(KNL).

2 DBCSR Overview

• Typical occupancy 0.1%–100%
• Matrices are stored in a blocked compressed sparse row

(CSR) format
• Non-zero elements are small dense blocks, indexed by the

CSR index
– Typical blocks sizes in the range of 1–50
– Small matrix multiplications (SMM) are organized in

”matrix stacks”, and special libraries are deployed for
computing the SMM stacks
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• Cluster Layer: mpi/Openmp-load balancing and block distribution
• Multrec Layer: Optimize memory access, cache-oblivious algorithm
• CSR Layer: Indexing and create/sort/filter stacks
• Scheduler and Driver Layers: Stack processing

1. Permutation of rows and columns, randomly distributed,
to obtain good load balance

2. Distribution over a two-dimensional grid of P processes,
e.g. 4 × 4 grid
• Static decomposition

3. Intra-node communications based on a communication-
reducing algorithm4

• Implementation based on 2.5D algorithm5

• MPI communications based on One-sided MPI
4. Local node execution of stacks in parallel by means of

OpenMP threads
• Static assignment of multiplications to threads
• Batch execution of the multiplications on the CPU

(LIBXSMM) and GPU (LIBCUSMM)

3 Tensor Framework

3.1 Example: Fast Hartree-Fock exchange

Applications of our sparse tensor framework include cubic
scaling RPA6 and a similar approach to fast, quadratic scaling
Hartree-Fock exchange (HFX).
As any algorithm consisting of subsequent tensor contrac-
tions, the HFX algorithm can be represented equivalently
in terms of tensors or matrices. The tensor model is
based on tensor contractions (TC). The matrix model
is based on matrix multiplication (MM) and matrix
conversion (MC) steps.

HFX in the tensor model
TC: [Qλµ] = [µλP ][PQ]
for each SCF step do

TC: [Qλν] = [Qσν][λσ]

TC: [µν] = [Qλµ][Qλν]
end for

HFX in the matrix model
MM: [µλ|Q] = [µλ|P ][P |Q]
for each SCF step do

MM: [Qν|λ] = [Qν|σ][σ|λ]
MC: [µ|λQ] = [µλ|Q]
MC: [ν|λQ] = [Qν|λ]
MM: [µ|ν] = [µ|λQ][ν|λQ]T

end for

3.2 Design: Tensor view on matrix data

[ijk] view

[ik|j] data

A light-weight tensor interface to DBCSR
bridges the gap between the tensor model and
the matrix model. While tensor contraction is
fully based on DBCSR matrix multiplication,

the tensor interface hides the matrix model. Thus algorithms
involving sparse tensors can be directly implemented in the
tensor model.
In order to preserve data locality in terms of atomic blocks,
tensors are mapped block-wise to DBCSR matrices (blocked
column-major order). The DBCSR tensor framework is
generic in the sense that arbitrary contractions between ten-
sors of arbitrary ranks and arbitrary data types are supported.

3.3 Tensor contraction
A tensor contraction (TC) is a combination of matrix conver-
sion (MC) steps and one matrix-matrix multiplication (MM):

[ijk]× [iklm] = [jlm] Tensor model
[ij|k] [kl|im] [mj|l]
↓ MC ↓ MC ↑ MC Matrix model

[j|ik]× [ik|lm]
MM−−−→ [j|lm]

Only the tensor representation is visible to the outside and
consistent matrix layouts are automatically chosen.

3.4 Matrix conversion

Matrix conversion (MC) is the conversion between arbitrary
2d representations of the same tensor and involves a com-
plete redistribution of tensor blocks and local reshape of ma-
trix data.
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3.5 Rectangular matrix-matrix multiplication

Traditional algorithms for parallel matrix-matrix multiplica-
tion (2.5D algorithm5) perform well only for square matrices.
For tensor contractions, we need a communication-avoiding
algorithm for rectangular matrices:7
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4 CUDA-Kernels

CUDA-Kernel parameters depend on hardware specifications
(number of MP, registers, and size of memories). However,
the best launch-, tile- and block-sizes are determined by a
benchmark for each individual kernel using an empirically
found heuristic.
For the transition from K20x to P100:
• No better heuristic has been found.
• Max. performance increased from 45% to 65% of peak.
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Figure 1: LIBCUSMM performance for selected optimized CUDA-kernels comprising (m=n=k) = {4,...,78}
matrices. The FLOP-rates, as obtained from individual kernel launches in a mini-app, are shown as blue (K20x)
and green (P100) bars.

5 Performance results on KNL system

• Preliminary results: first tests on a KNL system, no
specific code optimizations

• Configurations
1. Cray XC40 KNL “Grand Tavé” at CSCS

– 64 cores Intel Xeon Phi CPU 7230 @ 1.30GHz
– MCDRAM in cache mode, QUADRANT cluster mode

2. Cray XC50 GPU-partition “Daint” at CSCS
– 12 cores Intel Xeon CPU E5-2690 v3 @ 2.60GHz and NVIDIA

Tesla P100
• Tests performed within the CP2K package with application

benchmarks8

H2O-DFT-LS S-E AMORPH
Block sizes (m × n) 23 × 23 6 × 6 5 × 13
# Rows/columns 158, 976 1, 119, 744 133, 214
Occupancy range (%) 7 − 15 (4 − 6) 10−2 5 − 70
# Multiplications 193 618 94
DBCSR FLOPs (×1015) 4.038 0.074 1.680
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Figure 2: Relative performance of Tavé KNL versus Daint-GPU: values less than 1 mean that Daint-GPU
is faster than the Tavé KNL. Averages: 0.85 for H2O-DFT-LS, 0.73 for S-E, 0.86 for AMORPH. Fluctuations
are below 4%.

6 Summary/Outlook

• DBCSR is freely available at http://dbcsr.cp2k.org/ as
stand-alone, general purpose, sparse matrix multiplication
library including sample code.

• Future development on DBCSR under the project Sparse
Tensor Linear Algebra Library funded by PASC 2017–2020.

• Improving DBCSR as a library to facilitate usage in elec-
tronic structure codes beyond CP2K (collaboration with
ELSI9 project), numerical libraries and other scientific do-
mains.
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