
Platform for Advanced Scientific Computing 2017, Lugano, Switzerland

Reproducible climate and weather simulations:
an application to the COSMO model
C. Charpilloz*, A. Arteaga* , O. Fuhrer*, T. Montek , and C. Harrop †, ‡ ‡

* Federal Office of Meteotology and Climatology MeteoSwiss, Swiss Federal Institute of Technology Zurich,

 Cooperative Institute for Environmental Sciences‡

†

Penalty of the bit-reproducibility setup when compared to the
"native" version of the setup with the Cray compiler across
CPU and GPU (1.0 indicates similar runtime):

H
as

w
el

l
K

80

0.0 0.5 1.0 1.5 2.0 2.5
Performance

H
W

COSMO
Time loop

Physic

Dynamic

Full bit-reproducibility has been achieved for COSMO in
some setups. The following matrix shows which setups are
reproducible:

Tab. 1 - Reproducibility matrix across compilers and architecture.
Each color represent a match with another setup. The test
machine has Intel Haswell E5-2690v3 CPU and Nvidia Tesla K80
GPU.

GNU PGI Cray NVCC

GPU

CPU

Results

Tab. 2 - Flags used to obtain the reproducible setups represented
by the colors. The reproducibility is achieved on a preprocessed
code (see Method).

GNU PGI Cray NVCCSetup
nopattern,
fp0, O0,
noaggress,
flex_mp=intol
erant

Kieee,
concur=noal
tcode,noass
oc, nofma,
O0, nolre

march=nati
ve, ffp-
contract=o
ff, O0

march=nati
ve, ffp-
contract=o
ff, O0

fmad=false,
ftz=false, O0,
prec-div=true,
prec-sqrt=true

fp0, O2,
flex_mp=intol
erant

We propose a new framework where data are transparently
accessed or re-simulated with reruns on demand: storage is
traded for computational effort.

Introduction Source of non-reproducibility

COSMO is a good candidate model for reproducibility: no
concurrent access to variables between threads and no
reduction operations.

But sources of non-reproducibility exist in COSMO:

(i) the transcendental functions need to be replaced by a
portable set of functions that should be used regardless the
compiler or architecture (C++ & Fortran).

(ii) the problem of intrinsic operators must be replaced by a
function call then the problem is related to (i) (Fortran).

(iii) compiler optimizations alternate code depending on
data size, strength reduction, IEEE compliance, usage of
floating point contractions. They should be controlled with
flags and/or directives (C++ & Fortran).

(iv) the reassociation of operation has to be forbidden
(Fortran):

Example of reassociation applied by the compiler:

zqst = siau + sdau + sagg - ssmelt + sicri
 + srcri + srim + ssdep + srfrz

vmovsd -560(%rbp), %xmm0
vaddsd -552(%rbp), %xmm0, %xmm0
vaddsd -544(%rbp), %xmm0, %xmm0
vsubsd -536(%rbp), %xmm0, %xmm0
vaddsd -528(%rbp), %xmm0, %xmm0
vmovsd -520(%rbp), %xmm1
vaddsd -512(%rbp), %xmm1, %xmm1
vaddsd -504(%rbp), %xmm1, %xmm1
vaddsd -496(%rbp), %xmm1, %xmm1
vaddsd %xmm0, %xmm1, %xmm0
vmovsd %xmm0, -488(%rbp)

zqst = (siau + sdau + sagg - ssmelt + sicri) +
(srcri + srim + ssdep + srfrz)

(a)

(b)

(c)

Method: preprocessing the code and optimization flags

w +ary(i, j)**(x + y)

w

j x y

**

+

ary

i

+

w+pow(ary(i, j), (x + y))

w

j x y

+

ary

i

+

pow

The dynamics (C++/CUDA)

C++ standard is restrictive regarding the code
optimizations. Two step are needed:

(i) deactivating the FMA:

with GNU: -fp-contract=off and with NVCC: -nofma

namespace mf {
 __ACC_CPU__
 double exp(double x)
 { ... }
 __ACC_CPU__
 double log(double x)
 { ... }
 ...
}

using namespace mf;

static void Do(
 Context ctx, FullDomain
) {
 ctx[l::Center()] =
 t*mf::exp(-rvp*mf::log(p*1e-5));
}

import
call

(ii) providing portable transcendental functions:

The physics (Fortran/OpenAcc)

Fortran compilers have much more freedom in
reorganizing the expressions or instructions in order to
optimize the execution speed. Hence the code must be
preprocessed.

(i) The order of evaluation must be unique to ensure the
generation of a unique AST. We add parenthesis:

(iii) As one cannot shadow intrinsic operators in Fortran we
need to replace them. In COSMO it's the exponentiation
operator:

ztu8 = pa2c * pcb1 + ztd6 * ztu2 + ztd7 * ztu4

ztu8 = ((((pa2c * pcb1) + (ztd6 * ztu2)) + (ztd7 * ztu4)))

References

[1] Arteaga, A., Fuhrer, O., and Hoefler, T.: Designing bit-reproducible
portable high-performance applications, in: Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, pp. 1235-1244, IEEE,
2014.

[2] Lapillonne, X., Fuhrer, O.: Using compiler directives to port large scientific
applications to GPUs: An example from atmospheric science, in: Parallel
Processing Letters, 24, 2014.

[3] Li, R., Liu, L., Yang, G., Zhang, C., Wang, B.: Bitwise identical
compiling setup: prospective for reproducibility and reliability of
Earth system modeling, in: Geoscientific Model Development, 9, pp.
731-748, 2016.

Problem: convection-resolving simulations large
computational costs restriction to small domains or short
time scales.
Solution: adapt the COSMO model to use the largest available
supercomputers systems such as hybrid CPU-GPU architectures
[2].

2.2 km
horizontal
resolution

1
5
4
2

1542

60 vertical
levels

Initialization & copy to accelerator

Cleanup

Diagnostics
I/O

Data assimilation

Halo-update

Physics

Boundary conditions

Dynamics

C++/Fortran interface

C++/Fortran interface

Material: the COSMO model

Environment with changing climate requires the analysis of
convection-resolving simulations at continental scale. However
the huge amount of produced data makes the analysis of
the simulation impractical as it cannot be stored.

10 years
simulation

44 TB
of data

Problems:
(i) data access may trigger reruns of the simulation on different
architectures.

(ii) different architectures different compilers different
computations

(iii) climate simulations are highly non-linear small initial
differences in re-runs will rapidly grow into larger differences

COSMO is a non-hydrostatic atmospheric model based on finite
difference solvers and stencils computations.

Cray, PGI
(OpenACC)

GCC, Cray, PGI

Fortran

NVCC
(CUDA)

GCC

C++

GPU

CPU

Arch.

Technologies

(ii) The transcendental functions' calls must be shadowed
by a portable implementation:

The assembly (b) generated from the expression (a)
corresponds to the expression (c):

Solution: adapt COSMO to produce bit reproducible results
on these architectures [1].

module transcendental
 use iso_c_binding
 use iso_fortran_env

 interface LOG
 module procedure log_scalar, log_vect, ...
 end interface LOG

 interface
 pure real(c_double) function C_LOG(x) result(y) bind(C, name="cpp_log")
 !$acc routine seq
 use iso_c_binding
 implicit none
 real(c_double), value :: x
 end function C_LOG
end interface

contains
 pure real(kind=real64) function log_scalar(x) result(y)
 !$acc routine seq
 real(kind=real64), intent(in) :: x
 y = C_LOG(x)
 end function log_scalar

 ...

C/C++

FORTRAN

+

+

double cpp_log(double x) {
 ...
} +

extern "C" double cpp_log(double x);
 +

module Turbulence
 use Transcendental

 subroutine Diff(...)
 ...
 !$acc parallel
 !$acc loop gang vector
 do i = 1, N
 sat(i)=b1* LOG(b2*(i-b3)/(i-b4))
 end do
 !$acc end parallel
 ...
 end subroutine Diff

end module Turbulence

