ESCAPE: Accelerating extreme-scale Numerical Weather Prediction

Willem Deconinck, Andreas Müller, Gianmarco Mengaldo, Michali Diamantakis, Nils Wedi, Peter Bauer

European Centre for Medium Weather Forecasts, Reading, UK

Carlos Osuna, Oliver Fuhrer

MeteoSwiss, Zürich, Switzerland

Introduction

- Numerical Weather Prediction (NWP) and Climate models contain decades of algorithmic developments for conventional CPU hardware architectures.
- Paradigm shift towards more parallel and energy-efficient many-core hardware architectures due to breakdown of Dennard scaling.
- Large impact on programming models expected in the near future.
- Rethink of design choices for future software frameworks:
 - Scalability
 - Flexibility in algorithmic choices
 - Energy efficiency
 - Maintainability

ESCAPE (EU Horizon 2020)

Energy-Efficient Scalable Algorithms for Weather Prediction at Exascale

- Combine scientific and computer-science expertise
- Define and co-design necessary steps towards affordable exascale HPC simulations of weather and climate

Weather and Climate Dwarfs

Weather and Climate Dwarfs are self-contained algorithms representing key functional blocks of a NWP & Climate model. They must be verifiable and possible to integrate in back in the model.

Atlas, a library for NWP and Climate models

ESCAPE dwarfs rely on Atlas, an object-oriented library for flexible parallel data structures for structured grids and unstructured meshes for both global and limited area models.

Where are we heading?

- Variety of hardware → variety of algorithm implementations
- Single source code for maintainability is crucial
- Separation of concerns:
 - Readable science code
 - Abstract hardware specific details
 - Abstract parallelisation, memory, data structure details
 - Abstract computational loops and programming models
- Domain specific languages provide a way forward: GridTools

Atlas components showing support for both structured and unstructured grids, and hybrid unstructured meshes. Meshes hold connectivities between cells, edges and nodes.

Atlas code example (C++) for computing spherical harmonics spectral transforms.

Atlas code example (Fortran) for computing gradients using a finite volume method.

Coverage of ESCAPE Weather and Climate Dwarfs in ECMWF's operational integrated forecasting System (IFS). ESCAPE Dwarfs not covered by IFS: MPDATA advection, GRM (tropo solver), BRTF spectral transformed.

Figure 2: The aim of ESCAPE is to (1) define and create a number of Weather and Climate Dwarfs, (2) optimise them, (3) adapt them to novel hardware technologies, and (4) measure and benchmark them both for performance as well as energy efficiency.