
 

Figure 2: Comparison of implementations for a Horizontal Diffusion stencil in plain C and in GridTools4Py. In the low-
level language the developer must explicitly define stencil logic, sweep ranges (lines 13-14, 23-24, 30-31, 37-38) and 
direct array indexes (lines 15, 25, 32, 39). The high-level abstractions of GridTools4Py decouple and hide these elements, 
resulting in more concise, clear and readable code, benefiting productivity.

GridTools4Py
 
1  # Definitions function
2  def horizontal_diffusion(data, weight):
3      i = gt.Index()
4      j = gt.Index()
5
6      laplacian = gt.Equation()
7      flux_i = gt.Equation()
8      flux_j = gt.Equation()
9      diffusion = gt.Equation()
10
11     # Laplacian operator
12     laplacian[i, j] = -4.0 * data[i, j] + (data[i-1, j] 
13                                            + data[i+1, j]
14                                            + data[i, j-1]
15                                            + data[i, j+1])
16     # Horizontal flux
17     flux_i[i, j] = laplacian[i+1, j] - laplacian[i, j]
18     # Vertical flux
19     flux_j[i, j] = laplacian[i, j+1] - laplacian[i, j]
20     # Diffusion
21     diffusion[i, j] = weight[i, j] * (flux_i[i-1, j]
22                                       - flux_i[i, j]
23                                       + flux_j[i, j-1]
24                                       - flux_j[i, j])
25     return diffusion
26
27 # Create computation domain
28 my_domain = gt.domain.Rectangle((2, 2), (61, 61)) 
29
30 # Create stencil object
31 stencil = gt.Stencil(definitions_func=horizontal_diffusion,
32                  inputs={"data": array_a,
33                              "weight": array_b},
34                 outputs={"diffusion": array_out},
35                  domain=my_domain,
36                  mode=gt.mode.ALPHA)
 
 
 

C
 
1  void horizontal_diffusion( double *data, double *weight,
2           double *diffusion, int m, int n){
3
4    /* Buffers for intermediate results */
5    double *laplacian, *flux_i, *flux_j;
6   laplacian = (double*)malloc(m*n*sizeof(double));
7   flux_i = (double*)malloc(m*n*sizeof(double));
8    flux_j = (double*)malloc(m*n*sizeof(double));
9
10   int i, j, idx;
11
12   /* Laplacian operator */
13   for (i=1; i<m-1; ++i){
14     for (j=1; j<n-1; ++j){
15     idx = j+i*n;
16     laplacian[idx] = -4.0 * data[idx] + (data[idx-n]
17                                            + data[idx+n] \
18                                            + data[idx-1] \
19                                            + data[idx+1]);
20     }
21   }
22   /* Horizontal flux */
23   for (i=2; i<m-2; ++i){
24     for (j=1; j<n-2; ++j){
25     idx = j+i*n;
26     flux_i[idx] = laplacian[idx+n] - laplacian[idx];
27     }
28   }
29   /* Vertical flux */
30   for (i=1; i<m-2; ++i){
31     for (j=2; j<-2; ++j){
32     idx = j+i*n;
33     flux_j[idx] = laplacian[idx+1] - laplacian[idx];
34     }
35   }
36   /* Diffusion */
37   for (i=2; i<m-2; ++i){
38     for (j=2; j<n-2; ++j){
39     idx = j+i*n;
40     diffusion[idx] = weight[idx] * (flux_i[idx-n]   \
41                                       - flux_i[idx]   \
42                                       + flux_j[idx-1] \         
43                                       - flux_j[idx]);
44    }
45   }
46  free(laplacian); free(flux_i); free(flux_j);
47 }
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Introducing GridTools4Py
GridTools4Py (GT4Py) is a Python package meant to facilitate development of effective stencil codes through a high-level, declarative 
syntax and a flexible execution model. A Stencil object can be created by combining a function (symbolically defining the operations that 
have to be performed) with the arrays and the domain region over which the stencil has to operate (Figure 2, right panel).

Stencil codes
Stencil codes perform sweeps over 2D/3D arrays, computing new element values by accessing 
neighboring cells according to some fixed pattern, called stencil (Figure 1). Often associated with finite 
difference schemes over regular grids, stencils are more prominently employed in computational fluid 
dynamics, weather modeling, image processing, cellular automata approaches and PDE solving.
 

▪ The power of Python's ecosystem
GT4Py works with standard NumPy arrays, meaning that all the tools available in Python's vast ecosystem are at the user's disposal. 
Operators can be prototyped quickly while working on interactive frontends like IPython and Jupyter notebooks. Results can be 
processed with any Python data analysis toolset, or visualized on the spot using popular packages like Matplotlib, Bokeh or PyQtGraph.

▪ Automated stencil handling
Internally, GT4Py builds an abstract representation of the stencil, containing all the essential and distinctive traits of the requested 
mathematical operator (Figure 3). The abstract representation undergoes further analyses, providing for example the sweep ranges 
over intermediate data fields and array bounds checking, thus freeing the developer from directly managing these details. 
The graph form of the abstract representation allows easier and more insightful analyses compared to parsing the source code.
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Figure 1: On the left, a 2D Crank-Nicholson stencil.
On the right, a 3D 7-point stencil.

Figure 3:
GT4Py abstract 
representation graph 
for the stencil of 
Figure 2.

Figure 4: Fluid height for a Shallow Water Equations 
on the Sphere solver implemented with GT4Py.

Image credit: S.Ubbiali
 

Conclusions
In this work, we presented GridTools4Py, a Python package to define stencil operators at a high 
level, leveraging Python’s features and rich ecosystem to enable a fast and interactive 
development cycle. Users have the flexibility of executing stencil codes directly in Python for 
prototyping, or compile them into a high performance module, using the GridTools C++ library, all 
the while working from powerful frontends like Jupyter notebooks.
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▪ Enabling performance and debug
When executing the stencil, the abstract representation is translated to specific code for different backends, according to user needs.
A pure Python backend can be used to immediately run the stencil for feedback or debugging by stepping into generated code.
A performance backend relies on the GridTools C++ library [1] to create a high performance module, at the cost of compilation time and 
debugging capabilities. GT4Py is built on a modular architecture, meaning that new backends can be supported by adding modules that 
generate code starting from the abstract stencil representation.

 

Challenges of traditional 
approaches
Stencil codes have been traditionally written in languages like Fortran 
or C/C++ (e.g. Figure 2, left panel) to achieve high performance. These 
approaches encounter significant challenges when working with 
complex scientific models:

▪ Advanced models require large numbers of elaborate stencils 
operating over many different data fields; correctly laying out the 
sweep ranges for an increasing amount of cascading stencils, while 
preventing access violations on arrays of varying shapes, quickly 
escalates the difficulty of the task.

▪ Fine tuning an implementation, for example by grouping stencils 
and data fields to improve locality, requires specific and extensive 
knowledge, that is often outside the scope of domain scientists.  

▪ Low-level languages involve the use of repetitive boilerplate code, 

which affects readability and clarity.   

▪ Code is not architecture independent. Different implementations 
are required to run the same operations at peak efficiency on 
different platforms.


