

Figure 2: Comparison of implementations for a Horizontal Diffusion stencil in plain C and in GridTools4Py. In the low-
level language the developer must explicitly define stencil logic, sweep ranges (lines 13-14, 23-24, 30-31, 37-38) and
direct array indexes (lines 15, 25, 32, 39). The high-level abstractions of GridTools4Py decouple and hide these elements,
resulting in more concise, clear and readable code, benefiting productivity.

GridTools4Py

1 # Definitions function
2 def horizontal_diffusion(data, weight):
3 i = gt.Index()
4 j = gt.Index()
5
6 laplacian = gt.Equation()
7 flux_i = gt.Equation()
8 flux_j = gt.Equation()
9 diffusion = gt.Equation()
10
11 # Laplacian operator
12 laplacian[i, j] = -4.0 * data[i, j] + (data[i-1, j]
13 + data[i+1, j]
14 + data[i, j-1]
15 + data[i, j+1])
16 # Horizontal flux
17 flux_i[i, j] = laplacian[i+1, j] - laplacian[i, j]
18 # Vertical flux
19 flux_j[i, j] = laplacian[i, j+1] - laplacian[i, j]
20 # Diffusion
21 diffusion[i, j] = weight[i, j] * (flux_i[i-1, j]
22 - flux_i[i, j]
23 + flux_j[i, j-1]
24 - flux_j[i, j])
25 return diffusion
26
27 # Create computation domain
28 my_domain = gt.domain.Rectangle((2, 2), (61, 61))
29
30 # Create stencil object
31 stencil = gt.Stencil(definitions_func=horizontal_diffusion,
32 inputs={"data": array_a,
33 "weight": array_b},
34 outputs={"diffusion": array_out},
35 domain=my_domain,
36 mode=gt.mode.ALPHA)

C

1 void horizontal_diffusion(double *data, double *weight,
2 double *diffusion, int m, int n){
3
4 /* Buffers for intermediate results */
5 double *laplacian, *flux_i, *flux_j;
6 laplacian = (double*)malloc(m*n*sizeof(double));
7 flux_i = (double*)malloc(m*n*sizeof(double));
8 flux_j = (double*)malloc(m*n*sizeof(double));
9
10 int i, j, idx;
11
12 /* Laplacian operator */
13 for (i=1; i<m-1; ++i){
14 for (j=1; j<n-1; ++j){
15 idx = j+i*n;
16 laplacian[idx] = -4.0 * data[idx] + (data[idx-n]
17 + data[idx+n] \
18 + data[idx-1] \
19 + data[idx+1]);
20 }
21 }
22 /* Horizontal flux */
23 for (i=2; i<m-2; ++i){
24 for (j=1; j<n-2; ++j){
25 idx = j+i*n;
26 flux_i[idx] = laplacian[idx+n] - laplacian[idx];
27 }
28 }
29 /* Vertical flux */
30 for (i=1; i<m-2; ++i){
31 for (j=2; j<-2; ++j){
32 idx = j+i*n;
33 flux_j[idx] = laplacian[idx+1] - laplacian[idx];
34 }
35 }
36 /* Diffusion */
37 for (i=2; i<m-2; ++i){
38 for (j=2; j<n-2; ++j){
39 idx = j+i*n;
40 diffusion[idx] = weight[idx] * (flux_i[idx-n] \
41 - flux_i[idx] \
42 + flux_j[idx-1] \
43 - flux_j[idx]);
44 }
45 }
46 free(laplacian); free(flux_i); free(flux_j);
47 }

Flexible and high-performance stencil
codes with GridTools4Py

Kean MariottiLucas BenedicicAlberto Madonna (madonna@cscs.ch) Felipe A. Cruz

References
[1] GridTools - C++ libraries for applications on grids, available at http://eth-cscs.github.io/gridtools/ (accessed March 2017).

flux_j

-

*

wgt -

diffusion

+

+

data

*

-4.0 +

flux_i

+

-

laplace

-

+

Introducing GridTools4Py
GridTools4Py (GT4Py) is a Python package meant to facilitate development of effective stencil codes through a high-level, declarative
syntax and a flexible execution model. A Stencil object can be created by combining a function (symbolically defining the operations that
have to be performed) with the arrays and the domain region over which the stencil has to operate (Figure 2, right panel).

Stencil codes
Stencil codes perform sweeps over 2D/3D arrays, computing new element values by accessing
neighboring cells according to some fixed pattern, called stencil (Figure 1). Often associated with finite
difference schemes over regular grids, stencils are more prominently employed in computational fluid
dynamics, weather modeling, image processing, cellular automata approaches and PDE solving.

▪ The power of Python's ecosystem
GT4Py works with standard NumPy arrays, meaning that all the tools available in Python's vast ecosystem are at the user's disposal.
Operators can be prototyped quickly while working on interactive frontends like IPython and Jupyter notebooks. Results can be
processed with any Python data analysis toolset, or visualized on the spot using popular packages like Matplotlib, Bokeh or PyQtGraph.

▪ Automated stencil handling
Internally, GT4Py builds an abstract representation of the stencil, containing all the essential and distinctive traits of the requested
mathematical operator (Figure 3). The abstract representation undergoes further analyses, providing for example the sweep ranges
over intermediate data fields and array bounds checking, thus freeing the developer from directly managing these details.
The graph form of the abstract representation allows easier and more insightful analyses compared to parsing the source code.

j+1,n+1j,n+1j-1,n+1

j-1,n j,n j+1,n

Figure 1: On the left, a 2D Crank-Nicholson stencil.
On the right, a 3D 7-point stencil.

Figure 3:
GT4Py abstract
representation graph
for the stencil of
Figure 2.

Figure 4: Fluid height for a Shallow Water Equations
on the Sphere solver implemented with GT4Py.

Image credit: S.Ubbiali

Conclusions
In this work, we presented GridTools4Py, a Python package to define stencil operators at a high
level, leveraging Python’s features and rich ecosystem to enable a fast and interactive
development cycle. Users have the flexibility of executing stencil codes directly in Python for
prototyping, or compile them into a high performance module, using the GridTools C++ library, all
the while working from powerful frontends like Jupyter notebooks.

CSCS, Swiss National Supercomputing Centre

▪ Enabling performance and debug
When executing the stencil, the abstract representation is translated to specific code for different backends, according to user needs.
A pure Python backend can be used to immediately run the stencil for feedback or debugging by stepping into generated code.
A performance backend relies on the GridTools C++ library [1] to create a high performance module, at the cost of compilation time and
debugging capabilities. GT4Py is built on a modular architecture, meaning that new backends can be supported by adding modules that
generate code starting from the abstract stencil representation.

Challenges of traditional
approaches
Stencil codes have been traditionally written in languages like Fortran
or C/C++ (e.g. Figure 2, left panel) to achieve high performance. These
approaches encounter significant challenges when working with
complex scientific models:

▪ Advanced models require large numbers of elaborate stencils
operating over many different data fields; correctly laying out the
sweep ranges for an increasing amount of cascading stencils, while
preventing access violations on arrays of varying shapes, quickly
escalates the difficulty of the task.

▪ Fine tuning an implementation, for example by grouping stencils
and data fields to improve locality, requires specific and extensive
knowledge, that is often outside the scope of domain scientists.

▪ Low-level languages involve the use of repetitive boilerplate code,

which affects readability and clarity.

▪ Code is not architecture independent. Different implementations
are required to run the same operations at peak efficiency on
different platforms.

