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FUTURE DEVELOPMENTS
▶ Applications: parametrization, tuning and validation on 
electrochemical systems and reactions. Applications to nobel metal 
surfaces and transition metal oxides for batteries and fuel cells.
▶ Properties: coupling with the calculation of magnetic resonance 
(NMR and EPR) and infra-red (IR ) spectroscopies. 
▶HPC : Optimization for large systems on parallel and hybrid (CPU/
GPU) architectures. 
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IMPLEMENTATION IN EXISTING CODES
Quantum
ESPRESSO [11]
Environ module, last 
official release Environ_0.2 in Feb 2016, next release 
Environ_1.0 in Jul 2017. Interfaced with
▶ PW: single-point calculations, geometry optimization, 
cell relaxation, Born-Oppenheimer molecular dynamics, 
with psuedo-potentials, plane-waves basis set, reciprocal 
zone sampling for metallic systems, hybird functionals 
and Hubbard U corrections.
▶ NEB: calculation of transition states and reaction rates 
via the Nudged Elastic Band method.
▶TDDFPT: calculation of excitations energies and optical 
spectra via Time-Dependent DFT.
▶CP: Car-Parrinello and damped molecular dynamics 
simulations on large systems.

▶ Advanced Poisson solver: based on a 
Green's function formalism,  to handle 
periodic systems, surfaces and isolated 
systems without boundary conditions 
artifacts.
▶ Linear scaling DFT: massively parallel 
code using a wavelet basis set, able to 
treat large atomistic systems from first-
principles [6].
▶ Minima Hopping: for global minimum 
search and reaction path investigation.

Implementation of SCCS 
and SSCS versions of the 
continuum dielectric 

BigDFT [9,10]

Continuum models of solvation have long played a key role in quantum-
chemistry calculations [1], but have only recently started to appear in the 
condensed matter and materials communities [2-3].  By integrating out all 
the environment degrees of freedom, a finer control on the physical 
important aspects of the problem can be achieved, together with a 
substantial reduction of the computational burden. This will allow the high-
throughput modeling of wet  interfaces, which is crucial in searching for 
novel materials in electrochemistry and catalysis. 
The ingredients of our recently developed approaches are the following: 
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Continuum models of solvation are multiscale 
approaches that are used to model complex systems, 
where a distinction can be made between an 
important component and its environment.

Key ingredient is the definition of the interface 
between the two regions:
▶ It should only be defined on the degrees of freedom of the 
important component.
▶ It should be defined so as to provide clean derivatives with 
respect to the degrees of freedom of the system, in order to 
allow optimizations.  
▶ It should only describe the region of space that is 
accessible to the environment.

This last feature is usually neglected, but it is crucial in many 
applications and in hybrid atomistic/continuum approaches.

▶   Electrostatic: the continuum has an associated 
dielectric screening, which modifies electrostatic 
interactions in the system

▶ Non-Electrostatic: short range interactions are 
assumed to be proportional to the surface and 
volume of the interface.
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Continuous and smooth 
function that goes from 1 to 
0 in passing from the system 
region to the continuum 
environment
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SOLVENT-AWARE INTERFACES

A non-local contribution to the interface function: for 
each point in space a spherical region is sampled and 
the continuum is allowed only if its volume fraction in 
the sphere is larger than the volume of a solvent 
molecule. The new interface is built in terms of 
smooth differentiable functions, keeping the overall 
apprach well-behaved for optimizations over the 
solute degrees of freedom  

CHOICE OFTHE PARAMETERS

ENVIRON ON THE WEB

quantum-environment.org  public from March 2015

Platform for Advanced Scientific Computing Platform for Advanced Scientific Computing

MOTIVATIONS

SELF-CONSISTENT CONTINUUM  SOLVATION (SCCS) [2-7,9]

▶  CONs: more computationally demanding, less flexible to improve accuracy (anions require separate 
parameterization), electronic optimization may be hindered 

The interface function is built as the product of atom-centered 
smooth differentiable functions. 

▶  PROs: more flexible parameterization, individal spheres on specific 
atomic types can be adjusted, providing a remarkable accuracy also 
for charged systems; less computationally demanding; analytical 
contributions to interatomic forces.
▶ CONs: larger number of parameters requires more careful tuning 
and validation

SOFT-SPHERES CONTINUUM  SOLVATION (SSCS) [7-9]

▶  PROs: compact formulation that relies on a minimal number of global parameters (     and     ); 
automatically adapt to electronic degrees of freedom; no direct contributions to interatomic forces. 
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Polarization charge surrounding a TiO2 slab. Despite being 
inaccessible to the solvent molecules, low-density regions inside 
the crystal may be filled by the continuum environment.

The continuum embedding (right) starts at the outskirts of the quantum-
mechanical electronic density of the studied system (le� and central central)

So�-spheres interface for a solvated 
water  molecule, so�-sphere radii are 
built by uniform scaling of atomic van 
der Walls radii

The interface function is 
defined in terms of the 
electronic density of the system

So�-spheres

So�-spheres parameters
- so�nes: global, fixed for  stability
- atomic radii: specific, litterature
- scaling factor: global, tunable

Go from 0 to 1 as the argument 
goes through the so�-sphere 
radius 
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Spherical function

Convolution parameters
- so�nes: fixed for  stability
- solvent radius: specific, litterature
- scaling factor: global, tunable

Interface

Convolution of the interface function with a 
short range spherical function:
- computed on real-space reduced grid
- computed in reciprocal space using FFTs
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Smooth step function, passing from 
0 to 1 as the filled fraction 
overcomes a defined threshold. 
Parameters:
- threshold: physical or tunable
- smoothness: stability

The calculation of  derivatives 
involves a second convolution 
with the spherical function
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The new formulation of the interface 
introduces five new paramters. Of 
these, the solvent radius has a well-
defined physical  and can be 
obtained from the literature of from
simple smiulations.  Two parameters 
are introduced to smoothen the 
definition of the interface, thus 
improving numerical stability: these 
parameters can be tuned on 
performances.
Two parameters require specific 
care:
- scaling factor: controls the total 
size of the sampled space, must be 
larger than 1, but not too large.
- filled fraction threshold: depends 
on the kind of artefacts one needs to 
correct, may be tuned to improve 
accuracy.

Simple geometrical reasons provide some boundaries for the 
undefined parameters: a) the new interface should not change at a 
sharp planar boundary, thus the threshold should be larger than 
0.5; b) in order to completely fill a spherical cavity the size of a 
solvent molecule, the threshold should be lower than the red curve; 
c) filling elongated cavities requires even lower thresholds. 


