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Spectral Graph Partitioning

For an unweighted graph G(V,E) with n vertices and m edges,
the degree D, adjacency W and incidence A matrices lead to the
graph Laplacian operator L.
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The Ratio Cut balances the partition by cardinality. For an indi-
cator vector x 2 Rn of V

k

, it is approximated by the normalised
edge gradients Ax 2 Rm.
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The minimisation problem is the Rayleigh quotient of the sym-
metric graph Laplacian matrix and local solutions are eigenpairs
(�

i

,v

i

).

arg min
x2Rn

x

T

Lx

x

T

x

= �

i

The first eigenvector is constant v1 = c1 and represents the trivial
solution V = V [ ;. We exclude it by orthogonality and define
the Spectral Graph Partitioning [1] problem as follows.
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T

x = 0

The global solution v2 is Fiedler’s famous eigenvector. The sign
change indicates the narrowest region in the eigenspace, the short-
est cut.
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The Graph p-Laplacian
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Minimising a vector p-norm kxkp
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|p, p 2 (1, 2] pushes
elements of the solution towards discrete values.

We define the scalar function �

p

(x) = |x|p�1 sign(x). When ap-
plied element-wise to a vector x 2 Rn the inner product returns
the p-norm.
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The �
p

function allows us to re-define the minimisation problem
in the p-norm and recover the discreteness lost in the Ratio cut
approximation.
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This is the Rayleigh quotient for the nonlinear eigenvalue problem
that defines the p-Laplacian operator.
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We exclude the trivial solution with a nonlinear constraint and
define the p-Laplacian Graph Partitioning [2] problem as follows.
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Solving the Eigenvalue Problem

The algorithm was adapted to reduce complexity from O(n2) ver-
tices to O(m) edges for large sparse matrices.

• The nonlinear constraint is handled by feasible projection, using
the invertible �

p

function.
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• Initialising from a 2-Laplacian eigenvector is too costly to com-
pute. Instead a vector is synthesised using METIS [3] software.

• The algorithm is enclosed in an outer loop that decreases p ! 1
improving discreteness and balance during the solve.
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Numerical Experiments

The p-Laplacian refinement was tested on Delaunay triangulations
of 3-dimensional random point clouds.

• The algorithm ran over five sets of six graphs, each with 1 to
6 million vertices (15 to 100 million edges) and calculated the
balanced cut metric before and after refinement.

•Results show a consistent improvement of around 4% over the
METIS cut, increasing with scale. A similar experiment with
2-dimensional meshes yields an improvement of around 8%.

• Times for the separator refinement are linear in edges O(m) as
expected.

When tested on benchmark sparse matrices from the UFL [4] col-
lection, there was a similar improvement of around 4% with more
variation due to the di↵erent structures encountered.
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