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Spectral Graph Partitioning

For an unweighted graph G(V, E) with n vertices and m edges,
the degree D, adjacency W and incidence A matrices lead to the

graph Laplacian operator L.

(D—W)x=ATAx = Ix

An edge separator for a vertex subset Vi, UV}, = V has
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The Ratio Cut balances the partition by cardinality. For an indi-
cator vector x € R" of Vj, it is approximated by the normalised
edge gradients Ax € R".
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The minimisation problem is the Rayleigh quotient of the sy
metric graph Laplacian matrix and local solutions are eigenpairs

(Aiy vi).
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The first eigenvector is constant vi = ¢1 and represents the trivial
solution V' =V U . We exclude it by orthogonality and define
the Spectral Graph Partitioning [1] problem as follows.
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The global solution vs is Fiedler’s famous eigenvector. The sign
change indicates the narrowest region in the eigenspace, the short-
est cut.

2-Laplacian: Vertices=2147 Separator=98 Parts=(1069,1078) RCut=0.0917
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The Graph p-Laplacian

Equivalent p-norm of unit sphere

Minimising a vector p-norm Hx||g = > lzilP, p e (1,2] pushes
elements of the solution towards discrete values.

We define the s  function ¢p(z) = |z[P~ sign(z). When ap-
plied element-wise to a vector x € R™ the inner product returns

the p-norm.
xTgp(x) = luil? = I}
[

The ¢p, function allows us to re-define the minimisation problem
in the p-norm and recover the discreteness lost in the Ratio cut
approximation.
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This is the Rayleigh quotient for the nonlinear eigenvalue problem
that defines the p-Laplacian operator.
AT@I}(*AX) = Aép(x)
We exclude the trivial solution with a nonlinear constraint and
define the p-Laplacian Graph Partitioning (2] problem as follows.
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p-Laplacian: Vertices=2147 Separator=90 Parts=(1073,1074) RCut=0.0839

Solving the Eigenvalue Problem

The algorithm was adapted to reduce complexity from 0(712) ver-
tices to O(m) edges for large sparse matrices.

© The nonlinear constraint is handled by feasible projection, using
the invertible ¢p function.
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o Initialising from a 2-Laplacian eigenvector is too costly to com- o1s|
pute. Instead a vector is synthesised using METIS [3] software.
® The algorithm is enclosed in an outer loop that decreases p — 1 %050 w0 10 20 20 a0 w0 40 40 500 -0
. > . . eratons
improving discreteness and balance during the solve.
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variation due to the different structures encountered.
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