Università della Svizzera italiana

Faculty Institute of of Informatics Computational Science ICS

Fluid-Structure Interaction Simulations of the Heart

D.Pasadakis^a, M.Nestola^a, F.Maffessanti^a, B.Becsek^b, D.Obrist^b, R.Krause^a

^aUniversità della Svizzera italiana. Institute of Computational Science ^bUniversity of Bern, ARTORG Center for Biomedical Engineering Research

Coupling Strategy

velocities $oldsymbol{u}_f,oldsymbol{\eta}_s$ pre $\frac{p_f, p_s}{12 \text{ kPa}}$ ρ_f, ρ_s λ, μ Fdensities Lagrange multipliers 2.0 deformation gradient b_t Green-Lagrange strain tensor 1st Piola-Kirchhoff EVol P Surface

The relation between the left intraventricular pressure and volume was studied for an inflation period of $\Delta t=0.5~{\rm sec},$ yielding results in good agreement with experimental surements of the diastolic heart phase (Fritz et al. 2013).

t (sec)	Pressure (kdynes/cm ²)	Volume difference (mL)
0.1	9.332	16.109
0.2	9.362	16.587
0.3	12.886	21.190
0.4	15.442	28.374
0.5	15.998	30.812

Scalability

i] M. Nestola, An immersed boundary method based on the variational L2-projection approach, DD24 proceedings, 2017 (submitted)

ii] F.P.T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, Int. J. Numer. Methods Fluids, 2001.
iii] Q. Fang, D. Boas. Tetrahedral mesh generation from volumetric binary and gray-scale images, Proceedings of IEEE International Symposium on Biomedical Imaging, 2009